Curvilinear Motion

The motion a long a path other than a straight line is called a curvilinear motion

Displacement:

In x -direction : $\mathrm{x}=\mathrm{f}(\mathrm{t})$
In y -direction : $\mathrm{y}=\mathrm{g}(\mathrm{t})$
$r^{2}=x^{2}+y^{2}$
$\theta=\tan ^{-1} y / x$

$r^{>}$displacement from o is called the position vector.

Velocity:

In x-direction

$$
v_{x}=\frac{d x}{d t}=x^{\prime}
$$

In y-direction

$$
\begin{gathered}
v_{y}=\frac{d y}{d t}=y^{\prime} \\
v^{>}=v_{x}^{>}+v_{y}^{>} ; \quad v=\sqrt{v_{x}^{2}+v_{y}^{2}} \\
\theta=\tan ^{-1} \frac{v_{y}}{v_{x}}=\tan ^{-1} \frac{d y}{d x}
\end{gathered}
$$

Acceleration:

$$
\begin{gathered}
a_{x}=\frac{d v_{x}}{d t}=\frac{d^{2} x}{d t^{2}}=x^{\prime \prime} \\
a_{y}=\frac{d v_{y}}{d t}=\frac{d^{2} y}{d t^{2}}=y^{\prime \prime} \\
a^{>}=a_{x}^{>}+a_{y}^{>} ; \quad a=\sqrt{a_{x}^{2}+a_{y}^{2}} \\
\theta=\tan ^{-1} \frac{d^{2} y}{d^{2} x}
\end{gathered}
$$

Ex: A particle is moving along a curve such that $x=(t+1)^{2}$ and $y=(t+1)^{-2}(x$ and y in m, t in sec). Find v and a at $t=1 \mathrm{sec}$.
$V_{x}=d x / d t=x^{\prime}=2(t+1)$

Then $\quad a_{x}=2$
$V_{y}=d y / d t=y^{\prime}=-2(t+1)^{-3}$
Then $\quad a_{y}=6(t+1)^{-4}$
at $\mathrm{t}=1 \mathrm{sec}$
$v_{x}=2(1+1)=4 \mathrm{~m} / \mathrm{s}$
$v_{y}=-2(1+1)^{-3}=-1 / 4 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& a_{x}=2 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{y}=6(1+1)^{-4}=3 / 8 \mathrm{~m} / \mathrm{s}^{2} \\
& a=\sqrt{2^{2}+\left(\frac{3}{8}\right)^{2}} \quad, v=2 \mathrm{~m} / \mathrm{s}^{2} \\
& \Theta=\tan ^{-1} d^{2} y / d^{2} x=\tan ^{-1} 3 / 16=10.62^{\circ}
\end{aligned}
$$

$v=\sqrt{4^{2}+\left(\frac{-1}{4}\right)^{2}} \quad, v=4 \mathrm{~m} / \mathrm{s}$
$\theta=\tan ^{-1} \mathrm{dy} / \mathrm{dx}=\tan ^{-1} 1 / 16=3.75^{\circ}$

Ex: If $x=5 t^{3}$ and $y=4 t^{2}$ at time t, find the magnitude and direction of the velocity when $t=10$.
$x=5 t^{3}$ So $\mathrm{dx} / \mathrm{dt}=15 \mathrm{t}^{2}$
At $t=10$, the velocity in the x-direction is given by:

$$
d x / d t=v_{x}=15(10)^{2}=1500 \mathrm{~m} / \mathrm{s}
$$

Also, $y=4 t^{2}$ so the velocity in the y-direction is:

$$
\mathrm{dy} / \mathrm{dt}=8 \mathrm{t}
$$

When $t=10$, the velocity in the y-direction is:
$d y / d t=v_{y}=8(10)=80 \mathrm{~m} / \mathrm{s}$
So the magnitude of the velocity will be:
$\mathrm{v}=\mathrm{v}\left(\mathrm{v}_{\mathrm{x}}\right)^{2}+\left(\mathrm{v}_{\mathrm{y}}\right)^{2}=\mathrm{v} 1500^{2}+80^{2}=1502.1 \mathrm{~m} / \mathrm{s}$
Now for the direction of the velocity (it is an angle, relative to the positive x-axis): $\tan \theta_{\mathrm{v}}=\mathrm{v}_{\mathrm{y}} / \mathrm{v}_{\mathrm{x}}$ So $\theta_{\mathrm{v}}=3.05^{\circ}$.

At any instant the horizontal position of the weather balloon is defined by $x=(8 t) \mathrm{ft}$, where t is in seconds. If the equation of the path is $y=x^{2} / 10$, detelmine the magnitude and direction of the velocity and the acceleration when $t=2 \mathrm{~s}$.

SOLUTION

Velocity. The velocity component in the x direction is

$$
v_{x}=\dot{x}=\frac{d}{d t}(8 t)=8 \mathrm{ft} / \mathrm{s} \rightarrow
$$

$v_{y}=\dot{y}=\frac{d}{d t}\left(x^{2} / 10\right)=2 x \dot{x} / 10=2(16)(8) / 10=25.6 \mathrm{ft} / \mathrm{s} \uparrow$
When $t=2 \mathrm{~s}$

$$
\begin{aligned}
& v=\sqrt{(8 \mathrm{ft} / \mathrm{s})^{2}+(25.6 \mathrm{ft} / \mathrm{s})^{2}}=26.8 \mathrm{ft} / \mathrm{s} \\
& \theta_{v}=\tan ^{-1} \frac{v_{y}}{v_{x}}=\tan ^{-1} \frac{25.6}{8}=72.6^{\circ}
\end{aligned}
$$

Ans.

Ans.

Acceleration.

$$
\begin{gathered}
a_{x}=\dot{v}_{x}=\frac{d}{d t}(8)=0 \\
a_{y}=\dot{v}_{y}=\frac{d}{d t}(2 x \dot{x} / 10)=2(\dot{x}) \dot{x} / 10+2 x(\ddot{x}) / 10 \\
=2(8)^{2} / 10+2(16)(0) / 10=12.8 \mathrm{ft} / \mathrm{s}^{2} \uparrow \\
a=\sqrt{(0)^{2}+(12.8)^{2}}=12.8 \mathrm{ft} / \mathrm{s}^{2} \\
\theta_{a}=\tan ^{-1} \frac{12.8}{0}=90^{\circ} \quad \text { Ans. }
\end{gathered}
$$

(c)

For a short time, the path of the plane is described $y=\left(0.001 x^{2}\right) \mathrm{m}$. If the plane is rising with a constant velocity of $10 \mathrm{~m} / \mathrm{s}$, determine the magnitudes of the velocity and acceleration of the plane when it is at $y=100 \mathrm{~m}$.

SOLUTION

When $y=100 \mathrm{~m}$, then $100=0.001 x^{2}$

$$
x=316.2 \mathrm{~m} .
$$

$$
\begin{aligned}
& v_{y}=10 \mathrm{~m} / \mathrm{s} \\
& y=v_{y} t ; \text { then } 100 \mathrm{~m}=(10 \mathrm{~m} / \mathrm{s}) t \text { we have } t=10 \mathrm{~s}
\end{aligned}
$$

Velocity.

$$
v_{y}=\dot{y}=\frac{d}{d t}\left(0.001 x^{2}\right)=(0.002 x) \dot{x}=0.002 x v_{x}
$$

Thus $\quad 10 \mathrm{~m} / \mathrm{s}=0.002(316.2 \mathrm{~m})\left(v_{x}\right)$

$$
v_{x}=15.81 \mathrm{~m} / \mathrm{s}
$$

$v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(15.81 \mathrm{~m} / \mathrm{s})^{2}+(10 \mathrm{~m} / \mathrm{s})^{2}}=18.7 \mathrm{~m} / \mathrm{s} \quad$ An:

Acceleration.

$$
a_{y}=\dot{v}_{y}=0.002 \dot{x} v_{x}+0.002 x \dot{v}_{x}=0.002\left(v_{x}^{2}+x a_{x}\right)
$$

When $x=316.2 \mathrm{~m}, v_{x}=15.81 \mathrm{~m} / \mathrm{s}, \dot{v}_{y}=a_{y}=0$,

$$
\begin{gathered}
0=0.002\left((15.81 \mathrm{~m} / \mathrm{s})^{2}+316.2 \mathrm{~m}\left(a_{x}\right)\right) \\
a_{x}=-0.791 \mathrm{~m} / \mathrm{s}^{2} \\
a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{\left(-0.791 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(0 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}} \\
=0.791 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

